X7ROOT File Manager
Current Path:
/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib
opt
/
cloudlinux
/
venv
/
lib
/
python3.11
/
site-packages
/
numpy
/
lib
/
ðŸ“
..
📄
__init__.py
(2.7 KB)
📄
__init__.pyi
(5.46 KB)
ðŸ“
__pycache__
📄
_datasource.py
(22.1 KB)
📄
_iotools.py
(30.14 KB)
📄
_version.py
(4.74 KB)
📄
_version.pyi
(633 B)
📄
arraypad.py
(31.06 KB)
📄
arraypad.pyi
(1.69 KB)
📄
arraysetops.py
(32.87 KB)
📄
arraysetops.pyi
(8.14 KB)
📄
arrayterator.py
(6.9 KB)
📄
arrayterator.pyi
(1.5 KB)
📄
format.py
(33.95 KB)
📄
format.pyi
(748 B)
📄
function_base.py
(184.67 KB)
📄
function_base.pyi
(16.2 KB)
📄
histograms.py
(36.81 KB)
📄
histograms.pyi
(995 B)
📄
index_tricks.py
(30.61 KB)
📄
index_tricks.pyi
(4.15 KB)
📄
mixins.py
(6.91 KB)
📄
mixins.pyi
(3.04 KB)
📄
nanfunctions.py
(64.23 KB)
📄
nanfunctions.pyi
(606 B)
📄
npyio.py
(95.04 KB)
📄
npyio.pyi
(9.5 KB)
📄
polynomial.py
(43.1 KB)
📄
polynomial.pyi
(6.79 KB)
📄
recfunctions.py
(58.03 KB)
📄
scimath.py
(14.68 KB)
📄
scimath.pyi
(2.82 KB)
📄
setup.py
(405 B)
📄
shape_base.py
(38.03 KB)
📄
shape_base.pyi
(5.06 KB)
📄
stride_tricks.py
(17.49 KB)
📄
stride_tricks.pyi
(1.71 KB)
ðŸ“
tests
📄
twodim_base.py
(32.17 KB)
📄
twodim_base.pyi
(5.24 KB)
📄
type_check.py
(19.49 KB)
📄
type_check.pyi
(5.44 KB)
📄
ufunclike.py
(6.18 KB)
📄
ufunclike.pyi
(1.26 KB)
📄
user_array.py
(7.54 KB)
📄
utils.py
(36.92 KB)
📄
utils.pyi
(2.3 KB)
Editing: twodim_base.pyi
from collections.abc import Callable, Sequence from typing import ( Any, overload, TypeVar, Union, ) from numpy import ( generic, number, bool_, timedelta64, datetime64, int_, intp, float64, signedinteger, floating, complexfloating, object_, _OrderCF, ) from numpy._typing import ( DTypeLike, _DTypeLike, ArrayLike, _ArrayLike, NDArray, _SupportsArrayFunc, _ArrayLikeInt_co, _ArrayLikeFloat_co, _ArrayLikeComplex_co, _ArrayLikeObject_co, ) _T = TypeVar("_T") _SCT = TypeVar("_SCT", bound=generic) # The returned arrays dtype must be compatible with `np.equal` _MaskFunc = Callable[ [NDArray[int_], _T], NDArray[Union[number[Any], bool_, timedelta64, datetime64, object_]], ] __all__: list[str] @overload def fliplr(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ... @overload def fliplr(m: ArrayLike) -> NDArray[Any]: ... @overload def flipud(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ... @overload def flipud(m: ArrayLike) -> NDArray[Any]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: None = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[float64]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[_SCT]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[Any]: ... @overload def diag(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def diagflat(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: None = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[float64]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[_SCT]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[Any]: ... @overload def tril(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def tril(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def triu(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def triu(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def vander( # type: ignore[misc] x: _ArrayLikeInt_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[signedinteger[Any]]: ... @overload def vander( # type: ignore[misc] x: _ArrayLikeFloat_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[floating[Any]]: ... @overload def vander( x: _ArrayLikeComplex_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[complexfloating[Any, Any]]: ... @overload def vander( x: _ArrayLikeObject_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[object_]: ... @overload def histogram2d( # type: ignore[misc] x: _ArrayLikeFloat_co, y: _ArrayLikeFloat_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[floating[Any]], NDArray[floating[Any]], ]: ... @overload def histogram2d( x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[complexfloating[Any, Any]], NDArray[complexfloating[Any, Any]], ]: ... @overload # TODO: Sort out `bins` def histogram2d( x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: Sequence[_ArrayLikeInt_co], range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[Any], NDArray[Any], ]: ... # NOTE: we're assuming/demanding here the `mask_func` returns # an ndarray of shape `(n, n)`; otherwise there is the possibility # of the output tuple having more or less than 2 elements @overload def mask_indices( n: int, mask_func: _MaskFunc[int], k: int = ..., ) -> tuple[NDArray[intp], NDArray[intp]]: ... @overload def mask_indices( n: int, mask_func: _MaskFunc[_T], k: _T, ) -> tuple[NDArray[intp], NDArray[intp]]: ... def tril_indices( n: int, k: int = ..., m: None | int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def tril_indices_from( arr: NDArray[Any], k: int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def triu_indices( n: int, k: int = ..., m: None | int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def triu_indices_from( arr: NDArray[Any], k: int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ...
Upload File
Create Folder